

Attention

This library is in very early stages. Like the idea of it? Please
star us on GitHub [https://github.com/octue/django-twined] and contribute via the
issues board [https://github.com/octue/django-twined/issues] and the
twined roadmap [https://github.com/orgs/octue/projects/19].

Django Twined

django-twined helps run data services based on the twined framework [https://twined.readthedocs.io] from your
own django server.

If you’re a scientist or engineer getting started with creating online data services, here is definitely
NOT the right place to start! Check out the documentation for twined [https://twined.readthedocs.io] and
the example app templates in the SDK [https://github.com/octue/octue-sdk-python/tree/main/octue/templates].

“Twined” [t-why-nd] ~ encircled, twisted together, interwoven

Aims

This is an installable app for django, that allows management of octue-based services from django.

	This is great for advanced use cases where:
	
	you have specific security/firewalling requirements, or

	you want to manage your own auth, or

	you have specific/unusual data integration needs, or

	you have a pre-existing django-based web app and want to connect it into the twined ecosystem

	you want to run your apps on a cluster, and provide a single entrypoint for external services to connect

Health warning: to use this plugin to deploy your twined apps, you’ll need to handle all your own data
storage/orchestration, devops, server management, security and auth. Contact Octue [https://www.octue.com/contact]
if this doesn’t sound like your bag - we can help!

Raison d’etre

To help scientists and engineers solve the crisis. More here [https://www.octue.com].

Contents

	Django Twined

	Installation
	Install the library

	Install the django app

	Add the services endpoint

	Run migrations

	Add the base URL

	Quick Start

	Running a service registry
	Registering a service revision

	Getting the default service revision

	Controlling whether a service revision is set as the default at registration

	Settings

	Examples
	Tabs with different examples

	License
	The Boring Bit

	Third Party Libraries

	Version History
	Origins

	Releases

Installation

Install the library

django-twined is available on pypi [https://pypi.org/], so installation into your python virtual environment is dead
simple:

poetry add django-twined

Not using poetry [https://python-poetry.org/] yet? You definitely should, there’s a small learning curve then it removes a world of pip agony :)

Install the django app

You’ll need to install django_twined, django_gcp and jsoneditor as apps in your django settings:

INSTALLED_APPS = [
 # ...
 'django_gcp', # For event handlers and flexible storages
 'django_twined',
 'jsoneditor', # For editing JSON in modeladmin views
 # ...
]

Tip

You can use django-gcp [https://django-gcp.readthedocs.io/en/latest/] for your media/static storage, event handlers and task queues too!

Add the services endpoint

Include the django-twined URLs in your your_app/urls.py:

from django.urls import include, re_path

urlpatterns = [
 # ...other routes
 # Use whatever regex you want:
 re_path(r"^integrations/octue/", include("django_twined.urls")),
]

Using python manage.py show_urls you can now see the endpoint for registering and getting service revisions appear in your app.

Warning

The registry URLs are CSRF-exempt by default to allow automatic service revision registration from, for example,
GitHub Actions. If you don’t want this behaviour, you can import the view at django_twined.views.service_revision
and use it in your URL patterns as you like.

Run migrations

Then run python manage.py migrate django_twined to add the models used for managing services, events and questions to your database.

Add the base URL

Finally, make sure the BASE_URL setting is present in settings.py - it’s used to create absolute URLs for webhooks.

BASE_URL = "https://your-server.com"

Quick Start

Attention

LIBRARY IS UNSTABLE! WATCH THIS SPACE!

We suggest at this point you don’t try to use this yourself; contact Octue for support and we’ll help you out.

Running a service registry

Once the services endpoint has been added, your app can be used as a service registry -
ie service revisions can be registered and requested from it.

Registering a service revision

To register a service revision:

import requests

response = requests.post(
 "<base_url>/<chosen_path_for_django_twined_urls>/services/<namespace>/<name>",
 json={"revision_tag": "<revision_tag>"},
)

For example, if your base URL is myapp.org/api, you’ve registered the django-twined URLs under
integrations/octue, and the service revision you want to register is my-org/my-service:1.2.9, the request would
be:

import requests

response = requests.post(
 "https://myapp.org/api/integrations/octue/services/my-org/my-service",
 json={"revision_tag": "1.2.9"},
)

Tip

To override the registry deciding if the service revision being registered should be set as the default (see below),
add the "is_default" key to the request body and set it to either True or False.

Getting the default service revision

You can request the default service revision by not specifying a revision tag. By default, the service revision with the
latest semantic version revision tag will be returned.

import requests

response = requests.get(
 "https://myapp.org/api/integrations/octue/services/my-org/my-service",
)

response.json()
>>> {
 "namespace": "my-org",
 "name": "my-service",
 "revision_tag": "1.2.9",
 "is_default": True,
}

Tip

If you know the exact revision you want to use, you can still fetch further information for it.

import requests

response = requests.get(
 "https://myapp.org/api/integrations/octue/services/my-org/my-service"
 "?revision_tag=1.2.9",
)

response.json()
>>> {
 "namespace": "my-org",
 "name": "my-service",
 "revision_tag": "1.2.9",
 "is_default": True,
}

Currently, the only useful information this provides is whether the requested service revision is the default or not.
Later, more useful information will be returned (eg how to send a question to that specific service revision and
access tokens to do so).

Controlling whether a service revision is set as the default at registration

The TWINED_SERVICE_REVISION_IS_DEFAULT_CALLBACK setting can be set to a user-defined callable to control whether a
service revision is set as the default for its service during registration. The callable must take one argument,
service_revision (an instance of the ServiceRevision model), and return a boolean indicating whether the
revision should be set as the default. The default callable sets the service revision as the default if its revision
tag is the latest semantic version for the service.

Examples of how this feature can be used include:

	A/B testing

	Controlling the availability of beta versions of services

	Other custom selection of service revisions

Click here [https://github.com/octue/django-twined/blob/main/django_twined/models/service_revisions.py#L18] to see
the default callable as an example.

Settings

	Name

	Type

	Description

	TWINED_BASE_URL

	str

	The server address for generating absolute webhook URLs, eg "https://api.you.com"

	TWINED_DEFAULT_NAMESPACE

	str

	The namespace used by default (if none specified) when creating Service Revisions. Typically your organisation, and should be in kebab case, eg "mega-corp".

	TWINED_DEFAULT_PROJECT_NAME

	str

	The GCP project name used by default (if none specified) when creating Service Revisions. This is the project where the default-namespace services reside. Often (but not necessarily), this is the same as the namespace eg "mega-corp".

	TWINED_DEFAULT_TAG

	str

	The tag used by default (if none specified) when creating new Service Revisions. "latest" is used if not specified.

	TWINED_SERVICES

	dict

	DEPRECATED - DO NOT USE. The ServiceRevision model replaces the outgoing RegisteredService model, allows update of the parameters specified here, without rebooting django.

	TWINED_DATA_STORES

	dict

	A dictionary defining one or more Data Stores, which map a database table (django Model) to a bucket on GCP, syncing metadata between the files in the bucket and filterable / searchable columns in teh DB table.

	TWINED_SERVICE_REVISION_IS_DEFAULT_CALLBACK

	callable

	A function that takes one argument, service_revision, which is an instance of the ServiceRevision model, and returns a boolean indicating whether the revision should be set as the default during service revision registration. The default callable sets a service revision as the default if its revision tag is the latest semantic version for the service.

Examples

Here, we look at example use cases for the library, and show how to use it in python.

It’s also well worth looking at the unit test cases.

Tabs with different examples

Scenario

You need to provide stuff

Tab2

We need tabs!

{
 "thats": "right",
 "code": "goes in tabs too",
}

License

The Boring Bit

See the django-twined license [https://github.com/octue/django-twined/blob/main/LICENSE].

Third Party Libraries

django-twined includes or is linked against code from third party libraries, see our attributions page [https://github.com/octue/django-twined/blob/main/ATTIBUTIONS.md].

Version History

Origins

django-twined is the result of a refactor - Octue is progressively open-sourcing our stack for managing and
connecting digital twins and data services.

As you do when you’re a bootstrapped startup, we build our MVP as a massive monolithic django app, but wanted to reuse
parts of it in applications for clients. Copying/pasting code never makes sense, so here we are!

A huge thank you to Wind Pioneers [https://www.wind-pioneers.com/] whose business made the initial refactor possible,
and who now get to use twined to build the most kick-ass Wind Energy Resource Assessment applications in the world!

..ATTENTION:

django-twined will be unstable in 0.x versions. Consider every semiver increment to be breaking!

Releases

We create release notes automatically using
our conventional commits tools [https://github/octue/conventional-commits]
for completely automating code versions, release numbering and release history.

So for a full version history, check our releases page [https://github/octue/django-twined/releases].

Index

Data Stores

The purpose of a Twined Data Store is to synchronise
metadata from objects in an object store (bucket) to a table in
the database.

This allows us to create, manage, filter and query for datasets
using straightforward SQL or the django ORM.

This is mega-powerful, because it enables us to relate datasets to any other model in our webapp… “Here’s the dataset we used to calculate this important thing we’re showing you”.

Note

This is a common requirement in scientific applications, where
large batches of files are generated by instrumentation in a relatively unstructured way.

They then fester on a hard drive, accessible only to the people who generated them in the
first place. Even if placed on a network drive, it’s difficult to make them searchable across
an organisation, or make them reusable in subsequent analyses.

See the data store examples for some example applications!

Guiding Principles

	A datastore relates one bucket (with many objects) to one DB table.

	Object metadata is duplicated to the database, making it searchable/filterable, but…

	Object metadata remains the source of truth always.

Warning

Object metadata is the source of truth, while the database is duplicated. This means
that it is possible for database to be out of sync with the object store, at least temporarily.

Think of this as treating the database like a search index (because that’s exactly what it is in this application!), whose contents get updated on a slight lag to actual data.

Synchronising Metadata deals with this subject.

Dealing with Metadata

It’s a pain for everyone who is dealing with data to have to know django. In fact, we think it’s impossible!!

So it’s best if your team of scientists never touches the webapp code… And that’s why we’ve built the octue python library [https://github.com/octue/octue-sdk-python].

Adding, using and editing datasets in the cloud has never been easier! See the octue library [https://github.com/octue/octue-sdk-python] for how to upload a
dataset to a cloud store. If django-twined is synchronising that bucket, the data is immediately usable in the webapp!

Examples

Coming soon!

Registering Applications

One or more applications can :ref:`installed<_installing_app_dependencies>`_ and
:ref:`configured<_configuring>`_ in your django settings. django-twined will automatically register applications
that are successfully configured in the settings, turning them into services accessible via websocket.

Installing app dependencies

You’ll need to install dependencies for your applications. Assuming your apps are based on the :ref:`templates<>`_, they
have a setup.py file which describes their dependencies. The easiest thing to do is to simply install them.

Your requirements.txt file might look like:
.. code-block:

git+ssh://git@github.com/your_handle/app-name.git@0.0.3#egg=app_name
git+ssh://git@github.com/your_handle/other-app-name.git@0.0.1-nowake#egg=other_app_name

The path locations of these apps (used for the configuration above) can be determined using e.g. pip show app_name.

You may need tighter control over specific versions of their dependencies which is achievable using poetry, a pip
lock file or by manually specifying precise versions of those dependencies in your requirements file.

Attention

A current limitation is that all applications you run must have compatible dependencies, and will run on the same
stack as your django server. :ref:`This issue<>`_ describes the particular issue, which is part of a wider
architectural decision making process. In short: Expect this setup to evolve.

Configuring apps

First, configure them in your settings.py:

TWINED_SERVICES = {
 # The unique slugified name of the service (typically the same as the application name)
 "service-name": {
 # The default version to use if not specified in the URL
 "default_version": "0.0.1",
 "0.0.1": {
 "app_path": "/apps/app-name", # Path to where the app.py file is for this application
 "log_level": "info", # This will be provided to the application logger
 "skip_checks": False, # Tells the application to skip checks of incoming files
 "configuration_values": None, # Either a json string, object, or path to a json file on your server containing configuration values
 "configuration_manifest": None, # Either a json string, Manifest object, or path to a json file on your server containing configuration manifest
 }
 }
 # You can run any number of apps as services, but see the caveat below about their dependencies
 "other-service-name": {
 # The default version to use if not specified in the URL
 "default_version': "0.0.1",
 "0.0.1": {
 'app_path': '/apps/other-app-name',
 "log_level": "info",
 "skip_checks": False,
 'configuration_values': None,
 'configuration_manifest': None,
 }
 }
}

Using Applications

Once applications are :ref:`registered<_registering_applications>`_ (at startup of the server), the
websocket URLs enabling other services to connect to them will be generated.

WORK IN PROGRESS See tests for how to use consumer apps.

 nav.xhtml

 Table of Contents

 		
 Django Twined

 		
 Installation

 		
 Install the library

 		
 Install the django app

 		
 Add the services endpoint

 		
 Run migrations

 		
 Add the base URL

 		
 Quick Start

 		
 Running a service registry

 		
 Registering a service revision

 		
 Getting the default service revision

 		
 Controlling whether a service revision is set as the default at registration

 		
 Settings

 		
 Examples

 		
 Tabs with different examples

 		
 License

 		
 The Boring Bit

 		
 Third Party Libraries

 		
 Version History

 		
 Origins

 		
 Releases

_static/plus.png

_static/file.png

_static/minus.png

